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2. Frequentism and Birnbaum’s Theorem

- frequentism in statistics means that any statistical procedure must be
justified based on its properties under repeated sampling such as
mean-squared error for estimates, power for tests, expected size of
confidence sets, etc.

- repeated sampling means considering data sets xi, x, ... i.i.d. fy and the
average performance of the procedure for each 6 € ©®

- so if one procedure does better with respect to a particular repeated
sampling criterion than another, uniformly in 6, then it is preferred

- there is currently no frequentist theory that produces answers to E and H
for many meaningful problems and, in some instances, the answers
provided are somewhat questionable

- the criteria used to judge a procedure are typically loss-based and loss
functions (optimality criteria) need to be chosen and are not falsifiable via
the data which is contrary to the goal of objectivity

- for example, in an estimation problem should we use squared error,
absolute error or something else?

- often the choice is based on mathematical convenience and convention
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Birnbaum, A. (1962) On the foundations of statistical inference.
JASA, 57, 298, 269-306.

- attempted to characterize what are good frequentist procedures based on
commonly used, partial characterizations of statistical evidence and
produced a surprising result

- there are two basic principles of frequentism which most accept as
sensible: the sufficiency S and the conditionality C principles

- furthermore, there is the non-frequentist likelihood principle L

- Birnbaum apparently proved that, if you accept S and C, then you must
accept L

- this is paradoxical because S and C allow for frequentism but L doesn't

- Bayesianism conforms to L, so Birnbaum’s Theorem is sometimes cited
as support for Bayesian inference

- we examine this result more closely

Evans, M. (2013) What does the proof of Birnbaum’s theorem
prove? Electronic J. of Statistics, 7, 2645-2655.
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- wlog we simplify to the context where X is finite

- let Zg = denote the set of all inference bases based on such X with
fixed @ (easily generalized to allow for reparameterizations)

- a relation R on a set Z is a subset of Z x T so, if (h, k) € R, then )
and |, are related

- a relation R on Z is an equivalence relation if it satisfies

(i) (reflexive) (I,1) € R for all | € Zg

(i) (symmetric) if (h,h) € R then (b, h) € R

(iii) (transitive) if (h, k) € R and (h, k) € R then (h,h) € R

- an eq. rel. on Z partitions Z into equivalence classes

- a statistical principle is a relation on Zg such that two related inference

bases contain the same amount of evidence concerning the true value of 6
and so inferences should be the same

- to be a valid characterization of evidence the principle should be an
equivalence relation

Michael Evans University of Toronto http://\The Measurement of Statistical Evidence Lec 2021 4/12



- if a relation R on Z is not an eq .rel., various equivalence relations can
be obtained from it

-let Ry = {R* R, C R, Ryisaneq. rel. and if R, C Ry« C R with R,
an eq. rel. then R, = R..} and since the intersection of eq. rel.’'s on Z is
an eq. rel. then Rj;; = Ng.er R« is an eq. rel. called the laminal eq. rel.
induced by R (the biggest eq. rel. within R consistent with all the others)
- also, let R* = {R*: R C R*, R* is an eq. rel.} and define

R = Ng+cr R* the smallest eq. rel. containing R

Lemma (chaining) If R is a reflexive relation on Z, then R = {((/,1') : 3n
and b, ...y €T st. =1 1,=1and (I ls1) € Ror (li41,1;) € R}.
- do we have to accept the elements of R as equivalent?

Example

-Z=1{2,3,4,...} and (i,j) € R when i and j have a common factor
bigger than 1 so reflexive and symmetric but (6,3) € R and (2,6) € R
yet (2,3) ¢ R so not transitive

-and R =7 x T since for any (/,j), then (i,ij) € R and (ij,j) € R and
R expresses nothing meaningful
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likelihood principle

Likelihood Principle (L)
(h, k) € L whenever the likelihood function based on I equals
the likelihood function based on .

- the likelihood function is any positive multiple of the density at the
observed data considered as a function of 8, immediately gives

Lemma L is an eq. rel. on Zg

- so L is a potentially valid characterization of statistical evidence but
Example Irrelevancy of stopping rules.

- x ~ binomial(n, #),0 € (0, 1] observe x = k, gives

L(0|x) = 6(1—6)"* (sample for n tosses)

- y ~ negative-binomial(k, 0),6 € (0, 1] and observe y = n— k so
L(B|y) = 6%(1—6)"* (sample until k heads)

- should inferences be the same?

Michael Evans University of Toronto http://\The Measurement of Statistical Evidence Lec 2021 6 /12



sufficiency principle

- recall that, for model {fg 10 € @}, a statistic T (any function defined on
AX') is sufficient if the conditional distribution of the data x given the value
T (x) is independent of 6, T is minimal sufficient if for any sufficient
statistic T’ there is a function hr 7/ such that T(x) = hy 7/(T'(x)) and
obviously a 1-1 function of a mss is a mss

-let [x] ={z € X : fy(x) = cfy(z) for some ¢ > 0 and every 6 € O} so
[x] is the eq. class containing x induced by the eq. rel. on X’ that says two
data sets are equivalent if they give rise to the same likelihood function

Lemma [-] is a minimal sufficient statistic for {fy : 0 € ©}.

Sufficiency Principle (S)

If T; is a mss for the model of [; = ({fg : 6 € O}, x;) fori =1,2
and there is a 1-1 function h such that Ty = h(T,) with

Tl(Xl) = h(Tg(Xg)), then (/1, /2) €S.
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- the underlying idea is that, because the conditional distribution given a
sufficient statistic does not involve 6, reducing the data to the value of the
sufficient statistic, so the information locating x within

T HT(0)}={z:T(2) = T(x)}

is discarded, does not lose any evidence concerning the true value of 6 and
we want to make the maximum reduction in the data to the value of a mss
Lemma S is an eq. rel. on Zg and S C L.

Proof: The eq. rel. part is obvious. If (h, k) € S, then by the
factorization theorem fig(x;) = k(x;)gr.0(Ti(x;)) where gr,g is the density
of the mss T; for {fip: 6 € ©}. Also, gr,6(T1(x1)) = g10(h(T2(x2))) so
flO(Xl) = CgT29(h( T2(X2))) = C/)(QQ(XQ) which implies (Il, /2) €L

- so S is a potentially valid characterization of statistical evidence
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conditionality principle
Example Two measuring instruments.
- a physicist wants to measure a voltage and picks up a voltmeter

- there are two voltmeters available and, based on experience, it is known
that a measurement from voltmeter 1 gives values distributed N(u,0?)
and voltmeter 2 gives values distributed N (1, 03) where 1 is the unknown
voltage and 02 >> 03 are both known

- the stores manager tosses a fair coin giving the physicist voltmeter 1 if
heads is obtained and voltmeter 2 otherwise and suppose voltmeter 2 is
provided with the physicist knowing this

- voltages x = (x1, ..., x,) were obtained and X is the estimate but how to
quantify the accuracy of this estimate, namely, the conditional, given the
voltmeter used, 0.95-Cl x £ (02/+/n)zy.025 or the longer unconditional

(approx.) 0.95-Cl x + (1/ (02 + 03)/2n)z 025
- most would say the conditional interval is the right one

- note - the distribution of the choice of the voltmeter does not involve the
unknown p
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- a statistic U is ancillary for the model {fy : 6 € ©} if the distribution of
U(x) is independent of 6

Conditionality Principle (C) If U is an ancillary for the model in
I =({fy:0 €O} x), then (I,1y) € C and (Iy, 1) € C where
ly = {fr(-|U(x)): 0 € O}, x) and fy(- | U(x)) is the
conditional density of the data given U(x).

- the basic idea is that we want to remove all variation that does not
depend on 6 so appropriate accuracy assessments can be made

Lemma C is reflexive and symmetric but not transitive and C C L.
- so C is not a proper characterization of statistical evidence

- the basic idea to the proof is that there can be many ancillaries for a
model but if U; and U, are ancillaries it is not the case in general that
(Ui, Uy) is ancillary

- in particular there is no maximal ancillary U (every other ancillary can be
written as a function of U)
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Birnbaum’s Theorem If you accept S and C as proper characterizations
of statistical evidence, then you must accept L as a proper characterization
of statistical evidence and frequentism is not relevant.

Proof: Suppose that (/1, k) € L. Construct a new inference base

I = (M,y) from I, and |, as follows. Let M be given by

X = ({1} x X ) U ({2} x Xig,),

[ (1/2)fm, 0(x) when x € Xy,
fue(1,x) = { 0 otherwise,

[ (1/2)fu,0(x) when x € Xy,
fue(2 x) = { 0 otherwise.

Then .
T(ix) = { (i,x) when x & {x1,x}

{x1, x2} otherwise

is sufficient for M and so ((M, (1,x1)), (M, (2,x))) € S. Also,
U(i,x) = i is ancillary for M and thus

(M, (1,x1)), (M1, x1)) € C,. (M, (2, %)), (M2, %)) € C.

This completes the "proof".
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- but what this actually proves, using the chaining argument, is the
following

Lemma SUC=L

- namely, the smallest eq. rel. containing SUC is L (and note SUC C L
is not an eq. rel.)

- so we do not have to accept the additional equivalences induced in SUC
- Evans, Fraser and Monette (1986) prove

Lemma C= L.

- C is a significant problem for frequentism, can it be resolved? mostly just
ignored

- note C is not a problem for Bayes because in that formulation we
condition on all the data, not just ancillaries

- also ancillary statistics have a role to play in model checking and
checking for prior-data conflict
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